Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes
نویسندگان
چکیده
BACKGROUND Diabetes and hypertension are important non-communicable diseases and their prevalence is important for health authorities. The aim of this study was to determine the predictive precision of the bivariate Logistic Regression (LR) and Artificial Neutral Network (ANN) in concurrent diagnosis of diabetes and hypertension. METHODS This cross-sectional study was performed with 12000 Iranian people in 2013 using stratified- cluster sampling. The research questionnaire included information on hypertension and diabetes and their risk factors. A perceptron ANN with two hidden layers was applied to data. To build a joint LR model and ANN, SAS 9.2 and Matlab software were used. The AUC was used to find the higher accurate model for predicting diabetes and hypertension. RESULTS The variables of gender, type of cooking oil, physical activity, family history, age, passive smokers and obesity entered to the LR model and ANN. The odds ratios of affliction to both diabetes and hypertension is high in females, users of solid oil, with no physical activity, with positive family history, age of equal or higher than 55, passive smokers and those with obesity. The AUC for LR model and ANN were 0.78 (p=0.039) and 0.86 (p=0.046), respectively. CONCLUSION The best model for concurrent affliction to hypertension and diabetes is ANN which has higher accuracy than the bivariate LR model.
منابع مشابه
Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes
Background: Diabetes and hypertension are important non-communicable diseases and their prevalence is important for health authorities. The aim of this study was to determine the predictive precision of the bivariate Logistic Regression (LR) and Artificial Neutral Network (ANN) in concurrent diagnosis of diabetes and hypertension. Methods: This cross-sectional study was performed with 12000 ...
متن کاملPrediction and Diagnosis of Diabetes Mellitus using a Water Wave Optimization Algorithm
Data mining is an appropriate way to discover information and hidden patterns in large amounts of data, where the hidden patterns cannot be easily discovered in normal ways. One of the most interesting applications of data mining is the discovery of diseases and disease patterns through investigating patients' records. Early diagnosis of diabetes can reduce the effects of this devastating disea...
متن کاملComparing Bivariate and Multivariate Methods in Landslide Sustainability Mapping: A Case Study of Chelchay Watershed
1- INTRODUCTION In the last decades, due to human interventions and the effect of natural factors, the occurrence of landslide increased especially in the north of Iran, where the amount of rainfall is suitable for the landslide occurrence. In order to manage and mitigate the damages caused by landslide, the potential landslide-prone areas should be identified. In landslide susceptibili...
متن کاملComparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks
Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...
متن کاملComparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models
Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...
متن کامل